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Abstract Binding affinity data [Bioorg Med Chem
(2004) 12:613–623] of thiazole and thiadiazole deriva-
tives (n = 30) for the human adenosine A3 receptor
subtype have been subjected to 3D-QSAR (Quantitative
structure–activity relationships) analyses by molecular
shape analysis (MSA) and molecular field analysis
(MFA) techniques using Cerius2 Version 4.8. In the case
of the MSA, the major steps were (1) generation of
conformers and energy minimization; (2) hypothesizing
an active conformer (global minimum of the most active
compound); (3) selecting a candidate shape-reference
compound (based on the active conformation); (4) per-
forming pairwise molecular superimposition using the
maximum common subgroup (MCSG) method; (5)
measuring molecular shape commonality using MSA
descriptors; (6) determining other molecular features by
calculating spatial, electronic and conformational para-
meters; (7) selection of conformers; (8) generation of
QSAR equations by genetic function algorithm (GFA)
or stepwise regression. The best 3D-QSAR equation
(MSA) obtained from GFA technique shows 70.0%
predicted variance (leave-one-out) and 77.7% explained
variance. This equation shows the importance of Jurs
descriptors (atomic charge weighted positive surface
area, relative negative charge and relative positive
charge surface area), partial moment of inertia, energy
of the most stable conformer and the ratio of common
overlap steric volume to volume of individual molecules.
In the case of stepwise regression, the best relation
showed 46.1% predicted variance and 72.3% explained

variance. In the case of MFA, the major steps were (1)
generating conformers and energy minimization; (2)
matching atoms using a maximum common sub-
structure (MCS) search and aligning molecules using the
default options; (3) setting MFA preferences (rectan-
gular grid with 2 Å step size, charges by the Gasteiger
algorithm, H+ and CH3 as probes); (4) creating the field;
(5) analysis by the Genetic partial least squares (G/PLS)
method. The equation obtained was of excellent statis-
tical quality: 96.1% explained variance and 71.6% pre-
dicted variance. Statistically reliable 3D-QSAR models
obtained from this study suggest that these techniques
could be useful to design potent A3 receptor antagonists.

Keywords QSAR Æ MSA Æ MFA Æ Thiazole Æ
Thiadiazole Æ Adenosine A3 receptor

Abbreviations QSAR: Quantitative structure–activity
relationships Æ GFA: Genetic function
approximation Æ G/PLS: Genetic partial least
squares Æ MSA: Molecular shape analysis Æ
MFA: Molecular field analysis

Introduction

Adenosine, a metabolite of adenine nucleotides, is a
physiological regulator of several cellular activities and
cellular metabolism. It acts as an autacoid and activates
G protein-coupled membrane receptors (GPCRs), de-
signated as A1, A2A, A2B, and A3. Adenosine receptors
are present on virtually every cell. However, receptor
subtype distribution and densities vary greatly. Adeno-
sine plays an important role in many pathophysiological
conditions in the CNS as well as in peripheral organs and
tissues [1]. The multiple effects of extracellular adenosine
observed in many tissues depend on its ability to bind
and activate GPCRs. Adenosine receptors have been
considered promising therapeutic targets for treating
conditions of the cardiovascular, renal, respiratory,
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immune, gastrointestinal, and central nervous systems
[2]. Adenosine has a wide range of anti-inflammatory
properties, mediated mainly by signals transduced via its
receptor [3]. Adenosine mediates diverse physiological
effects including stimulation of gluconeogenesis [1],
suppression of cardiac rate and contractility [4], and
protection of heart from hypoxic damage [5].

The A1 adenosine receptor activation inhibits in-
flammation, necrosis, and apoptosis after renal ischae-
mia reperfusion injury in mice [6]. Its activation in CNS
leads to neuroprotective effects through the blockade of
neurotransmitter release, whereas, in the heart, it is a
potential target for cardioprotective and anti-infarct
agents [7]. Some A1 antagonists are undergoing clinical
trials as renal protective agents [7].

Specific A2A agonists promote wound healing in both
normal animals and in animals with impaired wound
healing [8]. The A2A antagonists are being developed as
novel therapeutic agents for Parkinson disease based on
their capacity to enhance motor function [9]. Activation
of A2A also leads to the control of CNS excitability [10].
The A2Breceptor has been found to mediate vasodila-
tion, inhibit vascular smooth muscle growth and col-
lagenase expression, stimulate cytokine synthesis, and
modulate intestinal functions and neurosecretions [11].
The presence of adenosine A2B receptors in human lung
mast cells mediates adenosine-induced bronchocon-
striction in asthmatics [11].

Activation of A3 agonists causes stimulation of
phospholipase D and the release of inflammatory med-
iators, such as histamine from mast cells, which are re-
sponsible for inflammation and hypotension [12].
Moreover, the A3 adenosine receptor blocks ultraviolet
(UV)-irradiation-induced apoptosis in mast-like cells [8].
Activation of A3 also leads to enhancement of in-
tellectual performance and various learning and memory
paradigms [13].

Quantitative structure–activity relationship (QSAR)
studies have been done on various derivatives acting on
different adenosine receptors. Comparative molecular
field analysis (CoMFA) has been used on xanthines [2, 14]
styryl-xanthines [15] and oxyadenosines [16] to study the
affinities for adenosine receptors. Multiple regression
analysis was used on 1,3-dimethylxanthines [17], quina-
zolines [18], quinolines [19] and triazolopurine derivatives
[20] for the QSAR study of binding affinities on various
adenosine receptors. The present paper deals with 3D-
QSAR analysis of the human A3 receptor binding affinity
data of thiazole and thiadiazole derivatives.

Materials and methods

Adenosine A3 binding affinity data reported by Jung
et al. [21] has been used for the present QSAR study.
The affinity data [ Ki(nM)] of thiazole and thiadiazole
derivatives (Table 1) for recombinant human A3 re-
ceptors expressed in CHO (Chinese hamster ovary) cells
have been converted to the logarithmic scale [pC(lM)]

and then used for subsequent QSAR analyses as the
response variable. Some of the compounds reported in
the original papers were excluded in the present study
because of their non-graded quantitative activity data,
the presence of uncommon structural features or outlier
behavior.

All computational experiments were conducted with
Cerius2 4.8 [22] version QSAR environment from Ac-
celrys (San Diego, USA) on a Silicon Graphics O2
workstation running under the IRIX 6.5 operating sys-
tem. Molecular shape analysis (MSA) and Molecular
field analysis (MFA) were used as the 3D-QSAR tech-
niques.

The MSA [23] is a formalism that deals with the
quantitative characterization, representation and ma-
nipulation of molecular shape in the construction of a
QSAR. The overall aim of MSA is to identify the bio-
logically relevant conformation without knowledge of
the receptor geometry and explain in a quantitative
fashion the activity of a series of congeners. The major
steps of MSA were (1) generation of conformers and
energy minimization; (2) hypothesizing an active con-
former (global minimum of the most active compound);
(3) selecting a candidate shape reference compound
(based on the active conformation); (4) performing
pairwise molecular superimposition using the maximum
common subgroup (MCSG) method; (5) measuring
molecular shape commonality using MSA descriptors;
(6) determining other molecular features by calculating
spatial, electronic and conformational parameters; (7)
selection of conformers; (8) generation of QSAR equa-
tions by genetic function algorithm (GFA) or stepwise
regression. A complete list of descriptors used in MSA is
given in Table 2. Multiple conformations of each mo-
lecule were generated using the Boltzmann jump as a
conformational search method. The upper limit of the
number of conformations per molecule was 150. Each
conformer was subjected to an energy minimization
procedure using the smart minimizer with the open force
field (OFF) to generate the lowest energy conformation
for each structure. A conformer of the most active an-
tagonist 28for the A3 receptor was selected as a shape
reference to which all the structures in the study com-
pounds were aligned through pair-wise super-
positioning. The method used for performing the
alignment was maximum common subgroup (MCSG)
[22]. This method looks at molecules as points and lines,
and uses the techniques of graph theory to identify
patterns. It finds the largest subset of atoms in the shape-
reference compound that is shared by all the structures
in the study table and uses this subset for alignment. A
rigid fit of atom pairings was performed to superimpose
each structure so that it overlays the shape-reference
compound.

The major steps of MFA [23] were (1) generating
conformers and energy minimization; (2) matching
atoms using maximum common substructure (MCS)
search and aligning molecules using the default options;
(3) setting MFA preferences (rectangular grid with 2 Å
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step size, charges by Gasteiger algorithm, H+ and CH3

as probes); (4) creating the field; (5) analysis by the
Genetic partial least squares (G/PLS) method. The
MFA models are predictive and sufficiently reliable to
guide the chemist in the design of novel compounds.
This approach is effective for the analysis of data sets
where activity information is available but the structure
of the receptor site is unknown. The MFA attempts to
postulate and represent the essential features of a re-
ceptor site from the aligned common features of the
molecules that bind to it. This method generates multi-
ple models that can be checked easily for validity. The
MFA formalism calculates probe interaction energies on
a rectangular grid around a bundle of active molecules.
The surface is generated from a ‘‘Shape Field’’. The
atomic coordinates of the contributing models are used

to compute field values on each point of a 3D grid. Grid
size was adjusted to default 2.00 Å . The MFA evaluates
the energy between a probe (H+ and CH3) and a mo-
lecular model at a series of points defined by a rectan-
gular grid. Fields of molecules are represented using
grids in MFA and each energy associated with an MFA
grid point can serve as input for the calculation of a
QSAR. These energies were added to the study table to
form new columns headed according to the probe type.

Statistical analysis of data was done using techniques
like genetic function approximation (GFA) and stepwise
regression for MSA and G/PLS for MFA using
QSAR+ environment of Cerius2 software [22].

The GFA technique [24, 25] was used to generate a
population of equations rather than one single
equation for correlation between biological activity and
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Structural features Adenosine A3 receptor binding 
affinity 

Sl. No. 

R X Y Obs.a Calc.b Calc.c Calc.d 
1 CH3 CH H 4.738 4.517 4.472 4.888 
2 (CH3)3CO CH H 2.292 2.572 2.783 2.216 
3 NCCH2 CH H 3.690 4.332 4.149 3.498 
4 CH3 CH 4-Cl 4.293 4.302 4.482 4.479 
5 C6H5CH2 CH 4-Cl 4.000 3.719 4.066 4.073 
6 CH3 CH 4-OCH3 5.523 4.952 5.007 5.245 
7 CH3 CH 3-OCH3 5.387 4.707 5.221 5.387 
8 CH3 CH 2-OCH3 4.086 5.108 4.748 4.061 
9 CF3 CH 4-OCH3 3.276 3.020 3.190 3.347 
10 CH3CH2 CH 4-OCH3 5.620 5.065 5.291 5.262 
11 CH3CH2CH2 CH 4-OCH3 5.108 5.025 5.149 5.277 
12 (CH3)2CH CH 4-OCH3 4.788 4.932 5.055 4.800 
13 NCCH2 CH 4-OCH3 4.614 4.602 4.630 4.568 
14 (CH3)3C CH 4-OCH3 4.496 4.699 4.656 4.666 
15 (CH3)3CO CH 4-OCH3 2.487 2.705 2.440 2.610 
16 C6H5 CH 4-OCH3 4.542 4.717 4.678 4.620 
17 C6H5CH2 CH 4-OCH3 4.848 4.265 4.558 4.846 
18 C6H5 CH2CH2 CH 4-OCH3 4.536 4.182 4.178 4.512 
19 p-CH3OC6H4CH2 CH 4-OCH3 2.936 3.953 3.796 2.967 
20 p-CH3OC6H4CH2CH2 CH 4-OCH3 4.544 3.887 3.939 4.489 
21 (C6H5)2CH CH 4-OCH3 3.279 3.362 3.596 3.286 
22 (C6H5)2CHCH2 CH 4-OCH3 3.398 3.301 3.128 3.395 
23 2-Furan CH 4-OCH3 4.502 4.264 4.507 4.403 
24 Thiophene-2-CH2 CH 4-OCH3 4.491 4.290 4.027 4.469 
25 2-Thiophene CH 4-OCH3 4.159 4.611 4.206 4.375 
26 CH3 N H 5.638 5.226 5.122 5.622 
27 C6H5CH2 N H 4.102 4.341 3.638 3.917 
28 CH3 N 4-OCH3 6.102 6.147 6.094 6.076 
29 C6H5CH2 N 4-OCH3 4.623 4.381 4.254 4.590 
30 CH3CH2 N 4-OCH3 5.945 5.860 5.972 6.100 

 

aReference [21]; Obs. = Observed; Calc.= Calculated 
bFrom Equation (1) 
cFrom Equation (2) 
dFrom Equation (4)

Table 1 Structural features,
observed and calculated
adenosine A3 binding affinity
data of thiazole and thiadiazole
derivatives
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physicochemical properties. The GFA involves the
combination of the multivariate adaptive regression
splines (MARS) algorithm with a genetic algorithm to
evolve a population of equations that best fit the training
set data. It provides an error measure, called the lack of fit
(LOF) score that automatically penalizes models with too
many features. It also encourages the use of splines as a
powerful tool for non-linear modeling. The GFA is done
as follows: (1) an initial population of equations is gen-
erated by random choice of descriptors; (2) pairs from the
population of equations are chosen at random and
‘‘crossovers’’ are performed and progeny equations are
generated; (3) it is better at discovering combinations of
features that take advantage of correlations between
multiple features; (4) the fitness of each progeny equation
is assessed by the LOF measure; (5) it can use a larger
variety of equation-term types in construction of its
models; (6) if the fitness of a new progeny equation is

better, then it is preserved. The model with a proper
balance of all statistical terms will be used to explain the
variance of the biological activity. A distinctive feature of
GFA is that it produces a population of models (e.g.,
100), instead of generating a single model, as do most
other statistical methods. The range of variations in this
population gives added information on the quality fit and
importance of the descriptors.

The G/PLS algorithm may be used as an alternative
to a GFA calculation. The G/PLS is derived from two
QSAR calculation methods: GFA and partial least
squares (PLS). The G/PLS algorithm uses GFA to select
appropriate basis functions to be used in a model of the
data and PLS regression as the fitting technique to weigh
the basis functions’ relative contributions in the final
model. The PLS is a generalization of regression, which
can handle data with strongly correlated and/or noisy or
numerous X variables [26]. It gives a reduced solution

Table 2 A complete list of
descriptors used in MSA Sl No. Spatial

parameters
Electronic
parameters

Molecular shape
analysis parameters

Conformational
parameters

1 Vm LUMO DIFFV Energy
2 RadOfGyration HOMO COSV
3 Density Dipole Fo
4 PMI NCOSV
5 Area ShapeRMS
6 Sxy SRVol
7 Syz
8 Sxz
9 (Sxy, f)
10 (Syz, f)
11 (Sxz, f)
12 Lx
13 Ly
14 Lz
15 g
16 JursPPSA_1
17 JursPPSA_2
18 JursPPSA_3
19 JursPNSA_1
20 JursPNSA_2
21 JursPNSA_3
22 JursDPSA_1
23 JursDPSA_2
24 JursDPSA_3
25 JursFPSA_1
26 JursFPSA_2
27 JursFPSA_3
28 JursFNSA_1
29 JursFNSA_2
30 JursFNSA_3
31 JursWPSA_1
32 JursWPSA_2
33 JursWPSA_3
34 JursWNSA_1
35 JursWNSA_2
36 JursWNSA_3
37 JursRPCG
38 JursRNCG
39 JursRPCS
40 JursRNCS
41 JursTPSA
42 JursTASA
43 JursRPSA
44 JursRASA
45 JursSASA
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that is statistically more robust than multiple linear re-
gression (MLR). The linear PLS model finds ‘‘new
variables’’ (latent variables or X scores) which are linear
combinations of the original variables. To avoid over-
fitting, a strict test for the significance of each con-
secutive PLS component is necessary and then stopping
when the components are non-significant. Cross-vali-
dation is a practical and reliable method of testing this
significance [26]. The use of G/PLS thus allows the
construction of larger QSAR equations while still
avoiding overfitting and eliminating most variables.

The statistical qualities of theMLRequations [27]were
judged by the parameters like explained variance (Ra

2),
correlation coefficient (R), standard error of estimate (s),
and variance ratio (F) at specified degrees of freedom
(d.f.). All accepted MLR equations have regression
coefficients and F ratios significant at 95 and 99% levels,
respectively, if not stated otherwise. For PLS equations
Ra
2, R2 and least square error (LSE) were taken as statis-

tical measures while LOFwas noted for the GFA-derived
equations. The 3D-QSAR equations generated were va-
lidated by PRESS (leave-one-out) [28, 29] and bootstrap
statistics which were calculated using the QSAR+ mod-
ule of the Cerius2 software [22] and the reported para-
meters are cross-validation R2 (Q2), predicted residual
sum of squares (PRESS), standard deviation based on
PRESS (SPRESS), standard deviation of error of predic-
tion (SDEP) and bootstrap r2 (bsr2). Both the model de-
velopment process and finally developed models were
subjected to randomization tests for validation purposes.
Additionally, the final models were subjected to leave-
20%-out crossvalidation with 15 trials in each case.

Results and discussion

Molecular shape analysis

A view of aligned molecules studied is shown in Fig. 1.
The values of important descriptors used in MSA-de-
rived equations are given in Table 3. The best equation
obtained from stepwise regression (F value for inclusion
of variables was set to 4) is the following:

pC¼�0:010ð�0:006ÞJursWPSA1

�17:170ð�8:925ÞJursRPCG

�0:007ð�0:004ÞNCOSVþ0:005ð�0:004ÞEnergy
þ1:712ð�1:457ÞLUMOþ7:900
n¼30;R2

a¼0:723;R2¼0:771;R¼0:878;

F ¼16:2ðd:f :5;24Þ; s¼0:252;

Q2¼0:461; SDEP¼0:688; SPRESS¼0:769;

PRESS¼14:2; bsr2ð�SDÞ¼0:772ð�0:009Þ ð1Þ

The 95% confidence intervals of regression coeffi-
cients are given within parentheses. Equation 1 could
explain 72.3% of the variance and predict 46.1% of the

variance. The theoretical F value at probability level of
0.01 (d.f. 5, 20) being 4.1, the variance ratio of Eq. 1 is
significant at the 99% level, indicating stability of the
regression coefficients. The model-development process
was subjected to a randomization test with 99 random
trials (Table 4). The mean value of the random R’s is
0.445 while the value of R from the non-random model
is 0.878. In the case of 98 of 99 random trials, the values
of random R’s were less than the R-value of the non-
random model. The final model (Eq. 1) was also sub-
jected to a randomization test with 99 random trials
(Table 5). In all cases the values of random R’s (mean
0.401) were less than that of the non-random model. The
calculated values of binding affinity according to Eq. 1
are given in Table 1. Figure 2a shows a scatter plot of
observed versus leave-one-out predicted binding-affinity
values. The model was also subjected to a leave-20%-out
cross-validation test with 15 trials and the R2 value be-
tween the observed and predicted values was found to be
0.570 (Table 6).

The negative coefficient of JursWPSA_1 (obtained by
multiplying the sumof the solvent-accessible surface areas
of all positively-charged atoms with the total molecular
solvent-accessible surface area and dividing by 1000) in
Eq. 1 indicates that the surface-weighted charged partial
surface area is detrimental to the binding affinity. Higher
values of JursWPSA_1 are observed for compounds 21

and 22, which have diphenylmethyl and 2-(diphenyl)ethyl
substituents, respectively, at the R position and these
compounds show less binding affinity. Again, the negative
coefficient of JursRPCG indicates the significant negative
contribution of relative positive charge (charge of the
most positive atom divided by the total positive charge).
Compound 9, with a trifluoromethyl group at the R po-
sition, has a higher value of JursRPCG than compound 6,
with a methyl substituent at R position, and thus shows
lower A3 binding affinity than the latter. The negative
coefficient of non-common overlap steric volume
(NCOSV) indicates that the non-common overlap steric
volume is also detrimental to the binding affinity. This
means the presence of substituents larger than those
present in the shape-reference compound lowers the
binding affinity. Compound 26 (R=methyl), which has a

Fig. 1 View of aligned study compounds in MSA
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comparatively smaller value of NCOSV, shows a binding
affinity close to that of the shape-reference compound 28,
while compound 22 [ R= 2-(diphenyl)ethyl], which has a

higher value of NCOSV, has less A3 binding affinity. In a
recent paper [30] it was shown that larger and more hy-
drophobic substituents than methyl or ethyl at the R

Table 3 List of values of selected descriptors used in MSA for compounds 1–30

Sl No. Fo NCOSV Energy LUMO JursSASA JursPPSA_3 JursWPSA_1 JursRPCG JursRNCG JursRPCS PMI_mag

1 0.033 182.71 �53.549 1.505 423.954 35.896 105.981 0.197 0.198 1.383 534.102
2 0.042 237.779 �177.999 1.413 524.475 51.08 184.654 0.199 0.155 1.154 1021.984
3 0.068 192.248 �57.446 1.38 457.421 34.771 108.015 0.19 0.191 0.962 692.608
4 0.039 195.316 �61.434 1.202 447.564 36.906 103.722 0.174 0.194 1.091 846.84
5 0.042 263.605 �39.393 1.165 566.58 42.585 166.284 0.147 0.173 0.498 1621.989
6 0.038 206.822 �36.457 1.563 472.121 43.373 135.417 0.156 0.187 1.096 825.027
7 0.065 201.305 �45.195 1.446 471.993 43.246 135.84 0.159 0.19 1.034 690.074
8 0.017 211.599 �24.347 1.613 457.761 42.515 133.31 0.155 0.182 1.011 579.405
9 0.023 225.487 134.735 1.108 499.317 37.127 111.519 0.279 0.139 0 1284.913
10 0.053 220.458 14.814 1.552 501.713 48.916 161.302 0.143 0.166 0.485 955.514
11 0.055 235.619 10.963 1.576 529.436 54.547 187.821 0.126 0.153 0.426 1179.29
12 0.025 243.097 34.266 1.549 529.125 51.317 182.951 0.135 0.152 0.13 1055.939
13 0.044 222.122 �40.744 1.381 499.834 41.362 134.362 0.152 0.181 0.66 1061.992
14 0.054 251.907 24.452 1.515 540.935 52.234 197.724 0.13 0.145 0.095 1197.389
15 0.018 268.847 �159.124 1.459 563.727 57.85 217.523 0.17 0.132 0.905 1432.314
16 0.064 252.997 30.155 1.538 556.155 46.602 182.551 0.141 0.172 0.956 1511.742
17 0.061 269.731 �12.142 1.558 584.469 48.781 210.486 0.135 0.165 0.489 1685.893
18 0.084 278.744 5.882 1.489 600.245 52.148 231.121 0.123 0.15 0.505 1668.26
19 0.033 302.116 0.475 1.513 631.812 54.851 250.752 0.117 0.141 0.366 2262.151
20 0.089 300.777 15.865 1.444 645.571 60.187 272.659 0.106 0.129 0.385 1876.351
21 0.051 340.963 13.489 1.559 693.942 55.841 298.664 0.116 0.146 0.787 2275.538
22 0.03 364.042 14.323 1.506 677.229 53.017 286.076 0.113 0.138 0.435 2109.69
23 0.087 230.175 85.142 1.502 527.238 47.808 163.38 0.142 0.161 1.131 1384.407
24 0.038 267.265 �30.613 1.479 567.508 45.375 188.076 0.134 0.165 0.486 1769.541
25 0.578 110.356 46.436 0.864 545.182 44.007 164.811 0.153 0.174 1.185 1537.805
26 0.622 69.85 �49.444 1.313 420.523 37.791 99.924 0.188 0.192 1.632 532.675
27 0.324 173.695 �23.696 1.283 542.077 41.434 168.593 0.163 0.17 1.258 1073.924
28 0.926 15.564 �29.936 1.365 468.231 45.838 129.893 0.15 0.179 1.343 825.21
29 0.277 204.26 �7.855 1.306 590.836 50.058 206.387 0.133 0.158 0.903 1596.654
30 0.618 87.026 21.683 1.364 497.099 51.961 157.295 0.137 0.162 0.927 994.467

Table 4 Results of randomization test applied on model development process

Equation No. 1 2 3 4

3D QSAR method MSA MSA MSA MFA
Modeling technique Stepwise regression GFA GFA G/PLS
R from non-random model 0.878 0.901 0.907 0.990
No. of random trials 99 9a 9a 9a

No. of random R’s less than non-random R 98 9 9 8
No. of random R’s more than non-random R 1 0 0 1
Confidence level 98% 90% 90% 80%
Mean value of R from random trials ± SD 0.445±0.127 0.568±0.119 0.568±0.119 0.961±0.024

a In case of each trial, 50,000 crossovers were performed

Table 5 Results of randomization test applied on the developed models

Equation No. 1 2 3 4

3D QSAR method MSA MSA MSA MFA
Modeling technique Stepwise regression GFA GFA G/PLS
R from non-random model 0.878 0.901 0.907 0.990
No. of random trials 99 99 99 99
No. of random R’s less than non-random R 99 99 99 99
No. of random R’s more than non-random R 0 0 0 0
Confidence level 99% 99% 99% 99%
Mean value of R from random trials ± SD 0.401±0.123 0.442±0.099 0.448±0.117 0.101±0.223
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position decrease the binding affinity, which was shown
further from the negative coefficient of log P. This is
further corroborated by the docking study of Jung et al.
[21], which shows that there is a serine residue (S170) in
close proximity to the R group, suggesting preference for
a relatively hydrophilic group. The positive coefficient of
LUMO indicates that the electrophilicity of the molecules
favors the binding affinity. Compound 25 (R = 2-thio-
phene), which has a lower value of LUMO, shows less A3

binding affinity than compound 26 (R = thiophene-2-
CH2�), which has a higher value. The energies of the
selected conformations also favor the binding affinity.
Compounds 2 and 15 (both having tert-butyloxy sub-
stituent at R position) having highly negative values of
Energy show low A3 binding affinity.

The following two equations were among those ob-
tained from the GFA (50,000 crossovers and other de-
fault settings):

pC¼ 0:140ð�0:052ÞJursPPSA 3

þ61:920ð�20:616ÞJursRNCG

�1:024ð�0:766ÞJursRPCS

�0:006ð�0:004ÞJursSASA

þ0:006ð�0:004ÞEnergyþ1:645ð�1:022ÞFo�8:735

n¼ 30;R2
a¼ 0:764;R2¼ 0:812;R¼ 0:901;

F ¼ 16:6ðd:f : 6;23Þ;LOF¼ 0:458;s¼ 0:215;

Q2¼ 0:705;SDEP¼ 0:509;SPRESS¼ 0:582;

PRESS¼ 7:8;bsr2ð�SDÞ¼ 0:813ð�0:007Þ ð2Þ

pC¼ 0:130ð�0:048ÞJursPPSA 3

þ61:291ð�20:009ÞJursRNCG

�1:056ð�0:749ÞJursRPCSþ0:007ð�0:004ÞEnergy
þ1:701ð�0:983ÞFo �0:001ð�0:000ÞPMI mag�10:180

n¼ 30;R2
a¼ 0:777;R2¼ 0:823;R¼ 0:907;

F ¼ 17:8ðd:f : 6;23Þ;LOF¼ 0:432;s¼ 0:203;

Q2¼ 0:700;SDEP¼ 0:513;SPRESS¼ 0:586;

PRESS¼ 7:9;bsr2ð�SDÞ¼ 0:824ð�0:006Þ ð3Þ

Equations 2 and 3 are close in statistical quality and
superior to Eq. 1. The theoretical F value at a prob-
ability level of 0.01 (d.f. 6, 20) being 3.9, variance ratios
of Eqs. 2 and 3 are significant at the 99% level, in-
dicating stability of the regression coefficients. The
model-development process was subjected to a rando-
mization test (Table 4) with nine trials in each of which
50,000 crossovers were performed. The mean value of
random R’s was found to be 0.568 and in all cases the
random R’s were less than those from the non-random
models. Again, the models developed (Eqs. 2 and 3)
were subjected to a randomization test with 99 trials in
each case (Table 5) and mean values of random R’s were
found to be 0.442 and 0.448, respectively, for Eqs. 2 and
3. In all cases the values of the random R’s were lower
than those of the non-random models. The calculated
values of binding affinity according to Eq. 2 are given in
Table 1. Figure 2b, c shows scatter plots of observed
versus leave-one-out predicted binding-affinity values
for Eqs. 2 and 3, respectively. The models were also
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Fig. 2 Scatter plots of observed
versus leave-one-out predicted
binding affinity values
according to a Eq. 1, b Eq. 2,
c Eq. 3, and d Eq. 4

Table 6 Results of leave-20%-
out cross-validation on the
developed models

Equation No. 1 2 3 4

3D QSAR method MSA MSA MSA MFA
Modeling technique Stepwise regression GFA GFA G/PLS
No. of trials 15 15 15 15
R2 between observed
and predicted values

0.570 0.806 0.796 0.940
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subjected to a leave-20%-out cross-validation test with
15 trials (Table 6) and the R2 values between the ob-
served and predicted values were found to be 0.806 and
0.796 for Eqs. 2 and 3, respectively.

The positive coefficient of JursPPSA_3 indicates that
the atomic-charge weighted positive surface area (sum of
the product of the solvent-accessible surface area times
the partial charge for all positively charged atoms)
contributes significantly to the binding affinity. Again,
the relative negative charge is conducive to the binding
affinity, as shown by the positive coefficient of
JursRNCG (charge of the most negative atom divided
by the total negative charge). Compounds 19–22 having
lower values of JursRNCG show less A3 binding affinity.
Total molecular solvent-accessible surface area (Jurs-
SASA) contributes negatively to the binding affinity.
Compounds 19–22 [with substituents like p-methox-
ybenzyl, p-methoxyphenylethyl, diphenylmethyl, and 2-
(diphenyl)ethyl] have higher values of JursSASA and
thus have less binding affinity. Again, it is to be noted
that JursPPSA_3 has a positive coefficient in the pre-
sence of variables JursRNCG and JursSASA. Among
compounds 19–22 (which have lower values of
JursRNCG and higher values of JursSASA), compound
20 has the highest value of JursPPSA_3 and has a higher
binding affinity than the remaining three. The relative
positive charge surface area (JursRPCS) is detrimental
to the activity. This parameter is obtained by dividing
the solvent-accessible surface area of the most positive
atom by JursRPCG. Compound 24 (R = thiophene-2-
CH2) has a smaller value of JursRPCS than 25 (R = 2-
thiophene) and thus the former shows higher binding
affinity. The positive coefficient of Energy indicates that
the conformational energy of the molecules is conducive
to the binding affinity. Compounds 2 and 15 (both with
a tert-butyloxy substituent at the R position) with highly
negative values of Energy show low A3 binding affinity.
Common overlap volume ratio (obtained by dividing the
common overlap steric volume by the volume of the
individual molecule) also contributes significantly to
the binding affinity. As Fo shows positive coefficients in
Eqs. 2 and 3, compounds having higher values of Fo
(e.g., compounds 26 and 30) show higher binding affi-
nity. Higher values of the principal moment of inertia
are detrimental to the binding affinity, as shown by the
negative coefficient of PMI_mag in Eq. 3. Compounds
19 and 21 have the highest values of PMI_mag and show
low binding affinity.

Molecular field analysis

The generated field was of the rectangular type. The
probes used were H+ and CH3. The charge method used
was Gasteiger and the energy cutoff was kept at �30 to
+30 kcal. The QSAR equation was generated using the
G/PLS method. The number of iterations was set to
50,000 to obtain the final equation. The mutation
probabilities were set to the system defaults. The final

result was obtained with the number of components at
four. A view of aligned molecules studied in the field is
shown in Fig. 3. The following equation was obtained
from the MFA:

pC¼�0:050Hþ=283�0:028Hþ=366�0:031Hþ=427

�0:019Hþ=448�0:054Hþ=466�0:052Hþ=534

�0:030Hþ=608�0:021Hþ=618�0:020Hþ=687

þ0:033Hþ=757�0:010CH3=417�0:052CH3=474

þ0:025CH3=529�0:022CH3=756þ5:590

n¼ 30;R2
a¼ 0:961;R2¼ 0:980;R¼ 0:990;

LSE¼ 0:017;Q2¼ 0:716;

SDEP ¼ 0:500;SPRESS¼ 0:707;

PRESS¼ 7:5;bsr2ð�SDÞ¼ 0:905ð�0:233Þ ð4Þ

In Eq. 4, H+ /283, H+ /366..., and so on are the
probes and their numbering (corresponding to spatial
positions as shown in Fig. 3); i.e., these represent inter-
actions at points 283 by H+, 366 by H+, etc. Equation 4
is of excellent statistical quality. It shows 96.1% ex-
plained variance while leave-one-out cross-validation R2

is found to be 71.6%. The model-development process
was subjected to a randomization test (Table 4) with
nine trials in each of which 50,000 crossovers were per-
formed. The mean value of random R’s was found to be
0.961 and in eight out of nine cases random R’s were less
than those from the non-random model. However, the
difference between the R-value of the deterministic
model and mean of those of the random models is small.
This shows the impressive ability of flexible modeling
techniques such as G/PLS to model even noise (i.e.,
permuted responses) and warns one to use commercial
modeling packages with sufficient validation strategies.
Again, the model developed (Eq. 4) was subjected to a
randomization test with 99 trials (Table 5) and mean
values of random R’s were found to be 0.101. In all
cases, the values of random R’s were less than those of
the non-random model. The calculated values of binding
affinity according to Equation (4) are given in Table 1.

Fig. 3 View of aligned study compounds in the field (MFA)
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Figure 2d shows scatter plots of observed versus leave-
one-out predicted binding-affinity values for Eq. 4. The
model was also subjected to a leave-20%-out cross-va-
lidation test with 15 trials (Table 6) and the R2 values
between the observed and predicted values were found
to be 0.940.

Conclusions

The present 3D-QSAR analysis explores the spatial,
shape and charge requirements for the binding affinity of
thiazole and thiadiazole derivatives for the adenosine
receptor A3 receptor. The MSA-derived equations show
the importance of Jurs descriptors (atomic charge
weighted positive surface area, relative negative charge
and relative positive charge surface area), partial mo-
ment of inertia, energy of the most stable conformer,
and the ratio of common overlap steric volume to the
volume of individual molecules. The MFA-derived
equation shows interaction energies at different grid
points. In summary, this analysis shows the importance
of charges and surface area for binding with the ade-
nosine A3 receptor. Statistically reliable 3D-QSAR
models obtained from this study suggest that these
techniques could be useful to design potent A3 receptor
antagonists.
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